TF-SProD: Time Fading based Sensitive Pattern Hiding in Progressive Data

Shubham Bhatia and Durga Toshniwal

Department of Computer Science and Engineering
Indian Institute of Technology, Roorkee
Uttarakhand - India

{shubham1695 @ gmail.com, durgatoshniwal @ gmail.com}

Abstract

In the present era, there is a tremendous genera-
tion of transactional data due to e-commerce ac-
tivities and traditional retail sales. Different or-
ganizations want to analyze the data generated by
them collaboratively to find some existing trends
and patterns in the global transactional data, which
may further lead to enhanced strategies for business
sales. But this may lead to the disclosure of some
patterns which are sensitive to an organization. In
order to avoid this, privacy preserving data mining
is used. The existing techniques for hiding sensi-
tive patterns in transactional data consider the data
as static data. Static data means that the entire data
is present beforehand, and no changes are expected
in the data, once the processing starts. But most of
the data that is received today is dynamic in nature,
meaning that the old data may be considered obso-
lete while new data is being added. In this paper,
a technique is proposed for hiding sensitive item-
sets from a set of frequent itemsets in progressive
data. The proposed algorithms apply sensitive pat-
tern hiding techniques to progressive data by using
a sliding window time fading model. A buffer is
used to keep track of the top-k frequent itemsets un-
til a given point in time. Both the frequency count
of the frequent items and their time of occurence
are used to update the buffer. Experiments have
been performed on synthetic datasets, and the re-
sults are very promising.

1 Introduction

The basic notion of information privacy is to have control
over handling and collecting an individual’s data. Collec-
tion of data from various sources may have many advantages,
but it may also lead to information leakage. To deal with
information leakage, methods have been proposed, which
are known as Privacy Preserving Data Mining (PPDM) tech-
niques. PPDM techniques work by modifying user’s origi-
nal data. But this modification may lead to reduction of data
utility. Thus PPDM methods are designed in a way so as to
hide user’s data, while maximizing the data utility. These
methods deal with withdrawal of knowledge from a huge

database while preventing the revelation of sensitive informa-
tion. The main problem with data mining techniques is that
people may infer some information which is sensitive to the
user, from non-sensitive information. This problem is widely
seen when one is trying to find out frequent itemsets from a
set of databases. During such an analysis, one may obtain
some frequent itemsets, which may have sensitive informa-
tion about a particular user or organization. For example, if
an organization publishes its transactional information with-
out hiding certain patterns, attackers may infer sensitive in-
formation from the non-sensitive patterns. To deal with the
aforesaid problem, privacy preserving frequent itemset min-
ing is done. The most common way of preserving privacy
is to reduce the support count of the sensitive items, to hide
them. This process of hiding the sensitive itemsets by re-
ducing their support counts is known as sanitization of the
database. But these techniques come with their challenges,
and hence they must be designed keeping in mind that a) the
impact on the database due to the changes should be as mini-
mal as possible, and b) a good trade-off should be guaranteed
between knowledge discovery and privacy.

Sensitive pattern hiding has been categorized into three
different approaches: Border-based approaches, exact ap-
proaches, and heuristic-based approach. Border-based ap-
proaches and exact approaches are not suitable for very large
datasets, because they are challenging to implement, and
also they are computationally expensive. As the data size
grows, the time taken by these approaches also increases.
Thus, heuristic based approaches are used mostly. These ap-
proaches decide the outcome based on local optima, hence
they are fast and simple to implement, as compared to the
exact and border-based approaches.

Most of the above approaches deal with privacy preserving
frequent itemset mining on static data, meaning that the entire
data is present beforehand and no changes are expected in
the data once the data is processed. This paper proposes a
technique for privacy preserving frequent itemset mining on
progressive data. Progressive data is dynamic data, in the
sense that it is updated regularly, and some data may fade
away or may be considered obsolete while the new data is
being generated.

This paper has been organized into six sections. The first
section gives a brief introduction about frequent itemset min-
ing and the problems which occur when frequent itemset min-

ing is done collaboratively, for more than one organizations.
The introduction also discusses the different approaches of
sensitive itemset mining. The second section elaborates the
state of art methods and the work done in the area of sensi-
tive itemset hiding. The third section explores the basic ter-
minologies being used. The fourth section explains the pro-
posed approach. The fifth section deals with the experiments
performed and the inference from the results of the experi-
ments. Finally, the sixth section concludes the paper.

2 Related Work

Most of the work done in the field of privacy preserving data
mining has been done on static data. For example, Oliveira
and Zaiane in [Oliveira and Zaiane, 2002] proposed an ap-
proach, in which only in a few scans of the database, mul-
tiple itemsets are hidden. In the first scan of the database,
an index file is created, which is used to find out sensitive
transactions corresponding to any sensitive itemset. In other
scans, data is sanitized so that minimal changes is done to
non-sensitive patterns. Three algorithms were introduced
by them: MinFIA- Minimum Frequent Itemset Algorithm,
MaxFIA- Maximum Frequent Itemset Algorithm and IGA-
Itemset Grouping Algorithm. In the MinFIA algorithm, sen-
sitive transactions are identified, and then, according to their
degree of conflict, they are sorted. Further, from each of these
transactions, an item is removed, which is known as the vic-
tim item. Victim item is chosen as the item which has mini-
mum support. MaxFIA works in the same fashion, but it se-
lects the victim item as the one with maximum support. IGA
works by grouping common items of sensitive itemsets, and
the item with minimum support is chosen as victim.

According to the approach proposed by Cheng et al. in
[Cheng et al., 2016], the very first step of the process is to
store the count of all non-sensitive patterns that a transaction
supports. Next, the count of each transaction is stored cor-
responding to each sensitive item, and these transactions are
sorted in accordance to their supports calculated in the first
step. Then victim items are removed from transactions. Vic-
tim item is the item in sensitive pattern which has maximum
support.

A confidence-based approach was proposed by Verykios et
al. in [Verykios et al., 2004]. In this approach the hiding of
sensitive patterns is done by decreasing the confidence of an
association rule because lesser side effects are caused to the
sanitized dataset. One limitation of this approach is that it
does not guarantee hiding of all sensitive itemsets.

The authors in [Jangra and Toshniwal, 2020] suggest a vic-
tim item deletion based sensitive pattern hiding technique, in
which each particle of the population consists of n number of
sub- particles derived from pre-calculated victim items.

An approach for hiding sensitive patterns without any side
effects is suggested in [Surendra and Mohan, 2019]. The au-
thors propose Recursive Pattern Sanitization (RPS) algorithm
which hides multiple sensitive itemsets irrespective of their
support count and size. This is done in single parse of the
closed patterns. The patterns retain the closeness property in
the sanitized model, and the model has inherent support for
finding frequent itemsets.

Few researches have been done in progressive data. For
frequent itemset mining in progressive data, various ap-
proaches have been proposed in [Mhatre and Toshniwal,
2010], [Mhatre et al., 2009] and [Thool and Voditel, 2013].
The broad classification of these approaches is counter based
algorithms and sketch based algorithms. Counter based ap-
proaches generally maintain a counter variable, and incre-
ment the counter if the item is seen again. Space saving
and lossy counting algorithm are types of counter based ap-
proaches. In sketch based approaches, both arrival and depar-
tures of an item are kept in mind. Fernandez-Basso et. al. in
[Fernandez-Basso et al., 2019] propose a method for finding
tendencies in streaming data using Big Data frequent item-
set mining. They propose a frequent itemset mining method
using sliding windows capable of extracting frequently occur-
ring items from continuous data flows. Yamamoto et. al. in
[Yamamoto et al., 2019] propose a hybrid approximation ap-
proach for scalable frequent itemset mining in streaming data.
They argue that any streaming data algorithm must possess
two important properties; (i) the real time property, which
means the property to process a large volume of data which
arrives continuously at high speed and detect the frequent
itemsets simultaneously, and (ii) memory efficiency, which
means the property to maintain the frequent itemsets for the
entire database, using limited amount of memory. Yun and
Lee in [Yun and Lee, 2016] discuss an approach for Incre-
mental mining of weighted maximal frequent itemsets from
dynamic databases. They discuss the issues with stream data
mining, i.e., the results can be very large scale. Storing these
results may be difficult to analyze and all of them may not
convey some meaningful information. Thus, they propose al-
gorithm to extract smaller number of itemsets. Most of the
existing research works on progressive data, particularly the
space saving algorithm has its own disadvantages. The space
saving algorithm takes into account only the support count of
the frequent itemsets. As and when a new item is received, if
the buffer can accommodate it, it is inserted into the buffer,
otherwise the element with the minimum support is deleted
from the buffer and the new element is inserted. The space
saving algorithm deletes the element only on the basis of its
support count, but it does not take into account the time at
which the element occurred. In this paper, timestamps are
also taken into account while deleting an item from the buffer.

Most of the existing research works for hiding sensitive
patterns have been developed for static data but not for pro-
gressive data. Static data remain constant with time, in the
sense that entire data is available at once, and no new items
are added / deleted. On the contrary, progressive data is more
complex to deal with. Progressive data is a stream of data,
with continuous inflow of items. The new incoming data can
increase the support count of some items which were not fre-
quent previously, and also remove some items which were
frequent at some point of time previously but are not seen
in the recent transactions. Thus, there is a continuous up-
gradation of data. This makes working with such data diffi-
cult because tracks have to be maintained about the addition
and deletion of items, and how this addition and deletion af-
fects the itemsets already present.

3 BASIC TERMINOLOGIES

3.1 Frequent Itemset Mining

Let X be a set of items, X = {x, x3,......x, }. Let T be set of
transactions that make the database. Each transaction in T is
an itemset, i.e., V r € T, t C X. With each transaction, a
unique identifier is associated, which is known as TID. Table
1 shows a sample database with 5 transactions.

TID Itemsets
T1 ABE
T2 BD
T3 BC
T4 ABD
T5 ABCE

Table 1: Sample Database T

Apriori algorithm[Agrawal et al., 1994] is used for fre-
quent itemset mining from a set of transactions. The apri-
ori algorithm proceeds by identifying individual items which
are frequent in the database, and then expanding the frequent
items to larger and larger sets, until the itemsets so formed
do not satisfy a minimum threshold value. This minimum
threshold value is known as minimum support.

Support indicates how often an itemset is seen in the
database. The support S of an itemset / with respect to T
can be defined as the number of transactions ¢ in 7 in which /
occurs.

|t e T;t C I
supp(l) = ——————— ()
|T|
The confidence of an association rule, A —> B is defined
as the number of transactions that contain A that also contain
B.

supp(AU B)
supp(A)
Association rules generated after applying the apriori algo-

rithm satisfy (i) a minimum threshold count, known as sup-

port, which is specified by the user, and (ii) a minimum con-
fidence value.
When apriori is applied to the database in Table 1, with

a minimum support count of 2(support of 40%) the frequent

itemsets are generated, as described in Table 2.

conf(A = B) =)

Itemset

AB
AE
BC
BD
BE
ABE

Support Count

NI NS 2N NS O 2 (S JRVN}

Table 2: Frequent Itemsets

Sensitive
Patterns

Is Sensitive pattern
a sithset of
frequent pattern?

Frequent Pattern
Generation using
Apriori Algorithm

Non-
Sensitive
Itemsets

Sensitive
Itemsets

Database Sanitization

Frequent
Patterns

R
Masked Frequent
Itemsets

Figure 1: Block diagram for proposed work

3.2 Hiding Sensitive Itemsets

In collaborative data mining, when two or more companies
publish their data together, which can be further analysed,
there is a chance that some private information of a company
can be leaked by mining the frequent itemsets. Thus every
company hides some information which is sensitive to it, by
using privacy preserving data mining.

Let X be a set of items, X = {x;, x3,.....,x, } which has to be
hidden from the database. With a given minimum support s,
the problem reduces to the transformation of the set of trans-
actions 7 in the database to 7’ such that the support of any
itemset x; < s, and | suppr (x;) - suppr (x;) | is minimum.

3.3 Period of Interest

For progressive data, a fixed sized sliding window is used.
This is also denoted as Period Of Interest(POI). The trans-
actions which have timestamp falling into POI contribute to
frequent itemset mining. For a particular POI, frequent item-
sets are found and are mapped to a buffer with their frequency
count and timestamp. Also, obsolete items are removed in
parallel, as and when the buffer reaches its maximum capac-

ity.

4 PROPOSED WORK

The flow diagram of the proposed work is represented by Fig-
ure 1. In the proposed approach, firstly the frequent item-
sets are mined from the continuous stream of data by ap-
plying the apriori algorithm. Secondly, the sensitive item-
sets that are supposed to be hidden, are masked by reduc-
ing the support count of victim items below the minimum
threshold. The database obtained after masking the sensitive
itemsets is known as sanitized database. Finally, the item-
sets obtained thereafter are mapped onto a buffer with their
frequency count and their timestamp of occurrence as shown
in Figure 2. Further, the subsections discuss the steps of the
proposed approach in detail.

4.1 Frequent Pattern Generation

Apriori algorithm is applied for generating frequent patterns
from the continuous stream of transactions. The apriori algo-
rithm takes a minimum threshold value as input. This value

of the minimum threshold specifies the minimum number of
times an item has to be present in the transactions, so that is is
marked as a frequent item. The Apriori algorithm firstly finds
individual frequent items in the entire set of transactions, and
then it proceeds by forming sets of items called frequent pat-
terns, until no further itemset can be found that satisfies the
minimum support criteria.

4.2 Differentiating sensitive and non-sensitive
itemsets

The frequent patterns found by Apriori algorithm are further
divided into two sets: sensitive itemsets and non-sensitive
itemsets. This division is done on the basis of pre-defined sen-
sitive patterns which is provided by the organisation whose
data has to be masked. If any sensitive pattern is found to
be a subset of a frequent pattern, then that particular frequent
pattern is added to the set of sensitive itemsets, otherwise the
frequent pattern is added to the set of non-sensitive itemsets.

4.3 Database Sanitization

Firstly, a victim item is to be chosen for each sensitive item-
set. This paper proposes two methods for selecting victim
items for sensitive pattern hiding in progressive data:

e TF-SProDmax(Time Fading based Sensitive pattern
hiding in Progressive Data max): In this method, the
item with maximum support is chosen as the victim
item.

e TF-SProDmin(Time Fading based Sensitive pattern hid-
ing in Progressive Data min): In this method, the item
with minimum support is chosen as the victim item.

After selecting the victim items, the support count of the
sensitive itemsets is reduced below the minimum threshold.
This is done so that when frequent pattern mining is applied
on sanitized data, the sensitive patterns are never discovered
by anyone.

4.4 Adding sanitized items to buffer

Once the database is sanitized, a set of final frequent itemsets
is obtained. These frequent itemsets are to be added to the
buffer. The buffer contains a list of overall frequent items
with their timestamp and frequency. The count is used to
discard less frequent(obsolete) items, once the buffer is full.
It may happen that an item has less frequency in the buffer
because it was added recently to the buffer. In such a case,
timestamp is used so that an item can be deleted from the
buffer considering not only its frequency, but also the time at
which it was added.
Figure 2 shows how the items are added to the buffer.

o If the item is already present in the buffer, its frequency
is incremented by 1, and its timestamp is updated to the
current timestamp.

o If the item is not present in the buffer, but the buffer has
space, then the item is simply added to the buffer with
an initial frequency of 1.

e If the item is not present in the buffer, and the buffer is
full, the item with least frequency and oldest timestamp
is removed from the buffer.

Increment
frequency,
Update

Itemset YES

Present?

Buffer

timestamp E
E]
2 Itemset | Timestamp | Frequency

E

2 Im1 TS1 10
Frequent ltemsets - =3
i Remove itemset| F

after Sanitization with oldest 7 IT2 TS2 15

timestamp and . -
ITn TSn 7

Figure 2: Adding frequent items to buffer

S EXPERIMENTS AND DISCUSSIONS

The experiments were conducted to test the misses cost of
the sanitized dataset, and comparison has been made on the
two proposed algorithms: TF-SProDmax and TF-SProDmin.
Also, to show the importance of timestamps, accuracy of TF-
SProD, which is a timestamp based method is compared with
respect to algorithm without timestamp. All the experiments
were performed using Python 3.7 on 64-bit Ubuntu machine
with 80 GiB RAM.

5.1 Simulation of progressive data

To simulate the effect of progressive data, the entire dataset
has been divided into chunks. Each chunk denotes a new in-
coming set of transactions at a particular point in time. Sen-
sitive patern hiding is applied to i chunk, then the sanitized
itemsets are stored in a buffer. The process is carried out sim-
ilarly for i+1™ to n* chunks.

5.2 Dataset Used

The datasets used for the experiments was generated by IBM
data generator. Different datasets are generated, and results
are varied according to the input parameters.

The datasets used have specifications as shown in Table 3

Dataset Number of Transactions Chunk Size
Dataset 1 176324 400
Dataset 2 352648 400
Dataset 3 705296 400
Dataset 4 1057944 400

Table 3: Dataset Configuration

5.3 Generation of sensitive itemsets

Since sensitive itemsets of an organization depend upon the
information which is private to the organisation, they are not
externally generated by any algorithm, rather the sensitive in-
formation has to be provided by the organisation itself. Thus,
while hiding the sensitive itemsets, they have to be explicitly
specified. Since the data being used in this paper is synthetic,
the sensitive itemsets are also synthetically generated. Some
of the frequent itemsets are randomly chosen from the entire
dataset and they are marked as sensitive itemsets.

Dataset #1 Dataset #2

~e— TF-SProDmax
~e— TF-5ProDmin

_ —e— TF-SProDmax
== TF-SProDmin

Misses Ratio

#Sensitive ltems

#Sensitive ltems

Misses Ratio

—s— TF-SProDmax N
0020 == TF-SProDmin 006 J

Dataset #3

Dataset #4

—~e— TF-SProDmax
~e— TF-SProDmin

Figure 3: Variation of misses ratio with number of sensitive items, keeping minimum support constant for different datasets

Dataset #1 Dataset #2

~e— TF-SProDmax
0040 - e~ TF-5ProDmin

~e— TF-5ProDmax
e~ TF-5ProDmin

Misses Ratio

14 15 15 17 18 13 20 15 16 17 13 19 20
Minimum Support(%) Minimum Supporti%)

Misses Ratio

Dataset #3 Dataset #4

~e— TF-SProDmax
e~ TF-5PraDmin

~e— TF-SProDmax
0030 - e~ TF-5ProDmin

Misses Ratio

15 16 17 18 19 20 15 16 17 18 19 20
Minimum Support(%) Minimum Support(%)

Figure 4: Variation of misses ratio with minimum support, keeping number of sensitive items constant for different datasets

5.4 Performance metrics

Let S be a set of sensitive itemsets, NSI,igina be the non- sen-
sitive frequent itemsets in the original database and NSIupirizeq
be the non- sensitive frequent itemsets in sanitized database.
Misses cost is defined as the number of non-sensitive item-
sets, that were mistakenly hidden by the algorithm. Misses
cost is defined by equation 3.

MC = |NSIoriginal - NSIsanitized| (3)

Lesser the misses cost, the more efficient the algorithm is.
Misses ratio is the ratio of misses cost to NSIyigina. Misses
ratio is defined by equation 4.

MC

MR = ————
NSIoriginal

“

5.5 Experimental Results

Comparison of TF-SProdmax and TF-SProdmin
Experiments have been performed to analyze the effect of:

e Choosing the element with the maximum support as the
victim item (TF-SProDmax)

e Choosing the element with the minimum support as the
victim item (TF-SProDmin)

The experiment results are based on two types of varia-
tions:

1. Finding misses ratio by keeping the support count
constant while varying the number of sensitive items.
[Fig. 3]

2. Finding misses ratio by keeping the number of sensitive
items constant while varying the support count. [Fig. 4]

The Variation of misses ratio by changing the number of
sensitive items, keeping minimum support constant for differ-
ent datasets is illustrated in Figure 3. The minimum support
was kept at 2%. As can be inferred from the graph, a general
trend can be seen that by increasing the number of sensitive
items, there is an increase in the misses ratio. This can be ex-
plained as, the increase in the number of sensitive items will
be incurred at the cost of more and more items(victim items)
being removed from the transaction set, to reduce the count
of sensitive items below minimum support. This may, in turn,
mark some items as sensitive, which were not sensitive before
sanitization. Hence there is an increase in the misses ratio.

Also, it can be seen that TF-SProDmin performs better than
TF-SProDmax, in the sense that it has lower misses ratio that
TF-SProDmax, at all points. This can be explained as: since
in TF-SProDmin the item with minimum support is chosen
as the victim item, hence less number of transactions are to
be altered during the sanitization of the database. Thus, the
misses ratio is less for TF-SProDmin.

Comparison of execution time

_ =#= TF-SProDmax
=#= TF-5ProDmin

Time(in seconds)

150000 200000 250000 300000 350000

Number of transactions

100000

Figure 5: Comparison of execution time for TF-SProDmax and TF-
SProDmin

Dataset #2

k=30 k=40 k=50 k=60
Buffer size

Dataset #1

100

% w0

w0)
§

7 I 0
@ @
k=30 k=40 k=50 k=60

sze

Buffer

Accuracy(s6)
(%)

Dataset #3

k=50 k=60
ize

Bufter si

Dataset #4

k=30 k=40 k=50 k=60
Buffer size

Accuracy(5)
y(%)

100
%0
<
a0
70

Figure 6: Bar plots showing differences between accuracy of sensitive pattern hiding by using timestamp (TF-SProD) shown by blue bars
and without using timestamps shown by red bars for all the four datasets.

Execution time for different chunk values

Timelin seconds)

20 B0 Mo W0 400 450 00 S50 60O
Chunk size

Figure 7: Execution time for various chunk sizes

Figure 4 shows the Variation of misses ratio by changing
the minimum support, keeping the number of sensitive items
constant for different datasets. The number of sensitive items
is kept as 84. It can be seen that with an increase in sup-
port count, the misses ratio decreases. This is because as
the support count is increased, fewer items qualify to be fre-
quent items, and hence fewer transactions are altered during
database sanitization. Hence the misses ratio can be seen to
decrease gradually.

Again, it can be seen that TF-SProDmin performs better
than TF-SProDmax, in the sense that it has lower misses ratio
that TF-SProDmacx, at all points, for the same reason as stated
in above paragraph.

Figure 5 compares the execution time(in seconds) for TF-
SProDmin and TF-SProDmax. The support was kept at 2%,
the number of sensitive items was kept as 84, and the chunk
size was 400. It can be seen that TF-SProDmin has slightly
less execution time for the same number of transactions. This
is because, in TF-SProDmin, the item with minimum support
is chosen as victim item. Thus less number of transactions are
to be altered to hide the sensitive patterns, hence the execution
time is less.

Accuracy of TF-SProD

The accuracy of the proposed approach can be measured by
counting the number of itemsets that were stored in the buffer
at the end of the algorithm, and finding the number of items
that were actually frequent when the entire dataset is consid-
ered as one single stream of data. The accuracy is defined
as:

Number of items that were actually frequent

A =
ceuracy Total number of items in the buffer

Accuracy for different chunk values

Accuracyi%)

8- . i i . | . .]
200 250 300 350 400 430 500 350 600
Chunk size

Figure 8: Accuracy for various chunk sizes

The accuracy is found out by comparing the items that were
stored in the buffer after the last chunk was processed, with
their support count if the entire dataset was processed as a
single stream.

The accuracy of pattern hiding algorithm by using times-
tamps in the buffer(TF-SProD), as compared to pattern hiding
without using timestamp is shown in Figure 6. The number
of sensitive patterns were taken as 10. The minimum support
count was kept at 2%. The graph analyses the accuracy of
the two algorithms by varying the size (k) of the buffer for
different datasets. It can be seen that the accuracy of TF-
SProD outperforms the accuracy of pattern hiding without
timestamps. Particularly for small buffer sizes, the difference
in the accuracy is very prominent. This is because for small
buffer sizes, items in the buffer have to be replaced quite fre-
quently, as and when new frequent itemsets arrive. When we
use timestamp as a measure to remove the item, only obso-
lete items are deleted. But when we do not use timestamps
and use only support count to remove items from the buffer,
new items may be deleted from the dictionary, because they
were added recently and had very less support count. Thus
TF-SProD proves to be better in case of accuracy of the items.

Determining chunk size

The chunk value chosen for the experiments was 400. Fig-
ure 7 shows the execution time of TF-SProDmin for different
chunk sizes and Figure 8 shows the accuracy of TF-SProDmin
for various chunk sizes. From the figures, it is clear that the
run time for chunk size 200 is maximum, but accuracy for the
same chunk is the best. Similarly for other chunk sizes, as we
increase the chunk size, the runtime reduces, but at the cost
of reduction of accuracy. Thus, a trade-off between accuracy

and chunk size is required, so that the algorithm can be run
with less execution time and good accuracy. For that purpose,
the chunk size in the algorithms has been chosen as 400.

6 CONCLUSION

Most of the work in privacy preserving frequent pattern min-
ing has been done on static data. However, most of the
real world data is progressive in nature. Thus, in this re-
search work, two approaches for sensitive pattern hiding in
progressive data: TF-SProDmax and TF-SProDmin are pro-
posed. Extensive experiments have been performed on syn-
thetic datasets. The performance of TF-SProDmin is seen to
be better, both in terms of execution time and misses ratio.

To simulate a continuous flow of data, sliding window time
fading model has been used, which keeps into account the fre-
quency count of the frequent patterns, as well as their times-
tamp. The importance of timestamp can be realised as the
TF-SProD outperforms the algorithm without timestamp in
terms of accuracy. The timestamp ensures that a recently
added item with less frequency is not deleted, rather deletion
of an item from the buffer is based on both frequency and its
time of addition into the buffer.

The research area of privacy preservation in progressive
data has great potential being an untouched area. A lot of
research can happen in this domain such as parallelization of
the algorithms using Hadoop MapReduce Framework, etc.

References

[Aggarwal and Philip, 2008] Charu C Aggarwal and S Yu
Philip. Privacy-preserving data mining: models and al-
gorithms. Springer Science & Business Media, 2008.

[Agrawal and Srikant, 2000] Rakesh Agrawal and Ramakr-
ishnan Srikant. Privacy-preserving data mining. In Pro-
ceedings of the 2000 ACM SIGMOD international confer-
ence on Management of data, pages 439-450, 2000.

[Agrawal et al., 1994] Rakesh Agrawal, Ramakrishnan
Srikant, et al. Fast algorithms for mining association
rules. In Proc. 20th int. conf. very large data bases,
VLDB, volume 1215, pages 487-499, 1994.

[Amiri, 2007] Ali Amiri. Dare to share: Protecting sensitive
knowledge with data sanitization. Decision Support Sys-
tems, 43(1):181-191, 2007.

[Cheng et al., 2016] Peng Cheng, John F Roddick, Shu-
Chuan Chu, and Chun-Wei Lin. Privacy preservation
through a greedy, distortion-based rule-hiding method.
Applied Intelligence, 44(2):295-306, 2016.

[Fernandez-Basso et al., 2019] Carlos Fernandez-Basso,
Abel J Francisco-Agra, Maria J Martin-Bautista, and
M Dolores Ruiz. Finding tendencies in streaming data
using big data frequent itemset mining. Knowledge-Based
Systems, 163:666-674, 2019.

[Jangra and Toshniwal, 2020] Shalini Jangra and Durga
Toshniwal. Vidpso: Victim item deletion based pso
inspired sensitive pattern hiding algorithm for dense
datasets. Information Processing & Management,
57(5):102255, 2020.

[Lee et al., 2004] Guanling Lee, Chien-Yu Chang, and Ar-
bee LP Chen. Hiding sensitive patterns in association rules
mining. In Proceedings of the 28th Annual International
Computer Software and Applications Conference, 2004.
COMPSAC 2004., pages 424-429. 1EEE, 2004.

[Lin et al., 2015] Chun-Wei Lin, Tzung-Pei Hong, Kuo-
Tung Yang, and Shyue-Liang Wang. The ga-based al-
gorithms for optimizing hiding sensitive itemsets through
transaction deletion. Applied Intelligence, 42(2):210-230,
2015.

[Mhatre and Toshniwal, 2010] Amruta Mhatre and Durga
Toshniwal. Hiding co-occurring sensitive patterns in
progressive databases. In Proceedings of the 2010
EDBT/ICDT Workshops, pages 1-5, 2010.

[Mhatre et al., 2009] Amruta Mhatre, Mridula Verma, and
Durga Toshniwal. Extracting sequential patterns from pro-
gressive databases: A weighted approach. In 2009 Inter-
national Conference on Signal Processing Systems, pages
788-792. IEEE, 2009.

[Oliveira and Zaiane, 2002] Stanley RM Oliveira and Os-
mar R Zaiane. Privacy preserving frequent itemset mining.
In Proceedings of the IEEE international conference on
Privacy, security and data mining-Volume 14, pages 43—
54. Australian Computer Society, Inc., 2002.

[Oliveira and Zaiane, 2003] Stanley RM Oliveira and Os-
mar R Zaiane. Protecting sensitive knowledge by data san-
itization. In Third IEEE International Conference on Data
Mining, pages 613-616. IEEE, 2003.

[Radhakrishna er al., 2015] Vangipuram Radhakrishna,
PV Kumar, and V Janaki. A survey on temporal databases
and data mining. In Proceedings of the The International
Conference on Engineering & MIS 2015, pages 1-6,
2015.

[Surendra and Mohan, 2019] H Surendra and HS Mohan.
Hiding sensitive itemsets without side effects. Applied In-
telligence, 49(4):1213-1227, 2019.

[Thool and Voditel, 2013] Manisha Thool and Preeti Voditel.
Association rule generation in streams. International Jour-
nal of Advanced Research in Computer and Communica-
tion Engineering, 2(5), 2013.

[Verykios et al., 2004] Vassilios S Verykios, Ahmed K EI-
magarmid, Elisa Bertino, Yiicel Saygin, and Elena
Dasseni. Association rule hiding. /EEE Transactions on
knowledge and data engineering, 16(4):434—447, 2004.

[Yamamoto et al., 2019] Yoshitaka Yamamoto, Yasuo Tabei,
and Koji Iwanuma. Parasol: a hybrid approximation ap-
proach for scalable frequent itemset mining in streaming
data. Journal of Intelligent Information Systems, pages 1—
29, 2019.

[Yun and Lee, 2016] Unil Yun and Gangin Lee. Incremen-
tal mining of weighted maximal frequent itemsets from
dynamic databases. Expert Systems with Applications,
54:304-327, 2016.

	Introduction
	Related Work
	BASIC TERMINOLOGIES
	Frequent Itemset Mining
	Hiding Sensitive Itemsets
	Period of Interest

	PROPOSED WORK
	Frequent Pattern Generation
	Differentiating sensitive and non-sensitive itemsets
	Database Sanitization
	Adding sanitized items to buffer

	EXPERIMENTS AND DISCUSSIONS
	Simulation of progressive data
	Dataset Used
	Generation of sensitive itemsets
	Performance metrics
	Experimental Results
	Comparison of TF-SProdmax and TF-SProdmin
	Accuracy of TF-SProD
	Determining chunk size

	CONCLUSION

